Categories
General

Questions to Ask During an Interview

When I walk out of an interview, I want to know the position’s responsibilities, I want to know the environment and I want to know what I am expected to accomplish during my first week. Most of all I want to know if the company is a fit for me. More often than not companies will hire the best among the candidate pool. This does not mean they are the best for the position. Simply they are the best in the given candidate pool. Very few companies recognize this difference. It’s your job as the interviewee to vet the company.

I have developed the following questions to ask during an interview:

What will be my first task?
Is there a project plan? How much thought has gone into this position?

**What will determine success or failure? **
If project success can’t be articulated, how can they measure success in the position?

**How do I get my tasks? **
Is an issue tracking system used?

Do you use source control?
A company without source control in 2014 is almost always a deal breaker. If a company can’t provide the most basic need of software engineers there are bound to be other issues.

Do you allow remote work?
Telecommuting is a nice perk. It affords you flexibility to do errands or have appointments during lunch.

**Describe the computer/environment I am provide. **
What type of machine is given to software engineers? Two monitors or one? Is the work area low traffic and quiet — Getting stuck in a loud high traffic area sucks.

What are the hours?
Are the hours flexible? What are the core hours?

Am I on call?
Are you expected to support production issues during off hours? Do software engineers answer customer support calls?

Automated builds and Deployments?
How evolved is the build process? Do developers manually build or is it automated?

Do you have testers?
Am I responsible for testing?

**What technologies do you use? **
There are some technologies that are no longer interesting.
SCRUM, Lean, Agile or Waterfall. Does the team do Code Reviews? What about Unit Testing?

Most forget that an interview is a two way street. You, as the interviewee, are interviewing the company and your future co-workers for a good fit in the company and in the position.

Categories
Code

Implementing Transparent Encryption with NHibernate Listeners (Interceptors)

Have you ever had to encrypt data in the database? In this post, I’ll explore how using nHibernate Listeners to encrypt and decrypt data coming from and going into your database. The cryptography will be transparent to your application.

Why would you want to do this? SQL Server has encryption baked into the product. That is true, but if you are moving to the cloud and want to use SQL Azure you’ll need some sort of cryptography strategy. SQL Azure does not support database encryption.

What is an nHibernate Listener? I think of a Listener as a piece of code that I can inject into specific extensibility points in the nHibernate persistence and data hydration lifecycle.

As of this writing the following extensibility points are available in nHibernate.

  • IAutoFlushEventListener
  • IDeleteEventListener
  • IDirtyCheckEventListener
  • IEvictEventListener
  • IFlushEntityEventListener
  • IFlushEventListener
  • IInitializeCollectionEventListener
  • ILoadEventListener
  • ILockEventListener
  • IMergeEventListener
  • IPersistEventListener
  • IPostCollectionRecreateEventListener
  • IPostCollectionRemoveEventListener
  • IPostCollectionUpdateEventListener
  • IPostDeleteEventListener
  • IPostInsertEventListener
  • IPostLoadEventListener
  • IPostUpdateEventListener
  • IPreCollectionRecreateEventListener
  • IPreCollectionRemoveEventListener
  • IPreCollectionUpdateEventListener
  • IPreDeleteEventListener
  • IPreInsertEventListener
  • IPreLoadEventListener
  • IPreUpdateEventListener
  • IRefreshEventListener
  • IReplicateEventListener
  • ISaveOrUpdateEventListener

The list is extensive.

To implement transparent cryptography, we need to find the right place to encrypt and decrypt the data. For encrypting the data we’ll use IPostInsertEventListener and IPostUpdateEventListener. With these events we’ll catch the new data and the updated data going into the database. For decrypting, we’ll use the IPreLoadEventListener.

For this demonstration we’ll be using DatabaseCryptography class for encrypting and decrypting. The cryptography implementation is not important for this article.

IPreLoadEventListener

public class PreLoadEventListener : IPreLoadEventListener
{
readonly DatabaseCryptography _crypto = new DatabaseCryptography();

///
/// Called when [pre load].
///

///The event. public void OnPreLoad(PreLoadEvent @event)
{
_crypto.DecryptProperty(@event.Entity, @event.Persister.PropertyNames, @event.State);
}
}

IPreInsertEventListener

public class PreInsertEventListener : IPreInsertEventListener
{
readonly DatabaseCryptography _crypto = new DatabaseCryptography();

///
/// Return true if the operation should be vetoed
///

///The event. /// true if XXXX, false otherwise.
public bool OnPreInsert(PreInsertEvent @event)
{
_crypto.EncryptProperties(@event.Entity, @event.State, @event.Persister.PropertyNames);

return false;
}
}

IPreUpdateEventListener

public class PreUpdateEventListener : IPreUpdateEventListener
{
readonly DatabaseCryptography _crypto = new DatabaseCryptography();

///
/// Return true if the operation should be vetoed
///

///The event. /// true if XXXX, false otherwise.
public bool OnPreUpdate(PreUpdateEvent @event)
{
_crypto.EncryptProperties(@event.Entity, @event.State, @event.Persister.PropertyNames);

return false;
}
}

It’s important to note that on both IPreUpdateEventListener and IPreInsertEventListener must return false, otherwise the insert/update event will be aborted.

Now that we have the Listeners implemented we need to register them with nHibernate. I am using FluentNHibernate so this will be different if you are using raw nHibernate.

SessionFactory

public class SessionFactory
{
///
/// Creates the session factory.
///

/// ISessionFactory.
public static ISessionFactory CreateSessionFactory()
{
return Fluently.Configure()

.Database(MsSqlConfiguration.MsSql2012
.ConnectionString(c => c
.FromConnectionStringWithKey("DefaultConnection")))

.Mappings(m => m.FluentMappings.AddFromAssemblyOf())
.ExposeConfiguration(s =>
{
s.SetListener(ListenerType.PreUpdate, new PreUpdateEventListener());
s.SetListener(ListenerType.PreInsert, new PreInsertEventListener());
s.SetListener(ListenerType.PreLoad, new PreLoadEventListener());
})
.BuildConfiguration()
.BuildSessionFactory();
}

When decrypting and encrypting data at the application level it makes the data useless in the database. You’ll need to bring the data back into the application to read the values of the encrypted fields. We want to limit the fields that are encrypted and we only want to encrypt string values. Encrypting anything other that string values complicates things. There is nothing saying we can’t encrypt dates, but doing so will require the date field in the database to become a string(nvarchar or varchar) field, to hold the encrypted data, once we do this we lose the ability to operate on the date field from the database.

To identify which fields we want encrypted and decrypted I’ll use marker attributes.

Encrypt Attribute

public class EncryptAttribute : Attribute
{
}

Decrypted Attribute

public class DecryptAttribute : Attribute
{
}

To see the EncryptAttribute and the DecryptedAttribute in action we’ll take a peek into the DatabaseCryptography class.

DatabaseCryptography

public class DatabaseCryptography
{
    private readonly Crypto _crypto = ObjectFactory.GetInstance();

    ///
    /// Encrypts the properties.
    ///
    ///The entity. ///The state. ///The property names. 
    public void EncryptProperties(object entity, object[] state, string[] propertyNames)
    {
        Crypt(entity, propertyNames, s = >
        _crypto.Encrypt(s),
        state)
        ;
    }

    ///
    /// Crypts the specified entity.
    ///

    ///
    ///The entity. ///The state. ///The property names. ///The crypt.
    private void Crypt(object entity, string[] propertyNames, Func<string, string> crypt, object[] state) where T : Attribute
    {
        if (entity != null)
        {
            var properties = entity.GetType().GetProperties();

            foreach (var info in properties)
            {
                var attributes = info.GetCustomAttributes(typeof (T), true);

                if (attributes.Any())
                {
                    var name = info.Name;
                    var count = 0;

                    foreach (var s in propertyNames)
                    {
                        if (string.Equals(s, name, StringComparison.InvariantCultureIgnoreCase))
                        {
                            var val = Convert.ToString(state[count]);
                            if (!string.IsNullOrEmpty(val))
                            {

                                val = crypt(val);
                                state[count] = val;
                            }

                            break;
                        }

                        count++;
                    }
                }
            }
        }
    }

    ///
    /// Decrypts the property.
    ///
    ///The entity. ///The state. ///The property names. 
    public void DecryptProperies(object entity, string[] propertyNames, object[] state)
    {
        Crypt(entity, propertyNames, s = >
        _crypto.Decrypt(s),
        state)
        ;
    }

}

That’s it. Now the encryption and decryption of data will be transparent to the application and you can go on your merry way building the next Facebook.